

ECT Program NRC Review Meeting

Advanced Energetics Project

On-Board Propulsion

June 12, 2002

Dr. John W. Dunning, Jr. NASA Glenn Research Center 216-433-5298 john.w.dunning@grc.nasa.gov

On-Board Propulsion Goals and Objectives

- Develop advanced propulsion technologies to enable lower-cost, faster missions with increased capability, and to extend mission reach.
- Provide critical technology to meet the needs of ambitious agency missions
- Enable concepts such as sparse aperture satellite constellations

Product Line	Product Line Managers
Electrostatic "lon"	Mr. Michael Patterson
Electrostatic "Hall"	Mr. Robert Jankovsky
Pulsed Plasma Thrusters	Mr. Eric Pencil
Very High Power	Dr. Michael LaPointe
Small Chemical	Mr. Brian Reed Dr. Steven Schneider

On-Board Propulsion NASA Customers

	Code S	Code Y	Code M	Code R
Electrostatic "Ion"	X		X	
Electrostatic "Hall"	X	X	X	
Pulsed Plasma	X	X		
Very High Power	X		X	
Small Chemical	X	X		X

On-Board Propulsion FY02 Funded Tasks

Ion
Hall
PPT
Very High Power
MPD
Electrodeless
Small Chemical
BiProp
MonoProp
microProp

Electric Propulsion at GRC

Technologies

Ion Thruster

Magneto-Plasma Dynamic

Personnel

Hall Thruster

Pulsed Plasma Thruster

Unique Development And Test Capabilities

- World's highest fidelity space simulation chambers for electric propulsion (13 large, 12 small facilities)
- Extensive interactions with user community critical to technology insertion
- · Strategic partnership with DOD/industry
- · Unmatched technology application portfolio
- · Capability from concept to flight

Applications

NASA EO-1 with GRC PPT Engine

NASA Deep Space 1 with GRC Ion Engine

Electrostatic "Ion" Thrusters

Technology Products

Diagnostics and Life Modeling
Component and System Level
Low Energy Sputtering
Cathode High Energy Ion Formation
Propellantless Cathode Technology
Understand wear mechanisms

Gridded Ion

Extend NSTAR operating Range Develop 10kW, throttleable, 4000sec, 550kg engine,

~NSTAR mass

Benefits

Smaller propulsion system mass fraction More payload / science Smaller launch vehicle

Mission Applications

Space Science*

Propulsion for all classes of missions and spacecraft sizes

HEDS

Propulsion for all classes of missions and spacecraft sizes

* Co-funding

Better understanding of EP thruster physics More efficient engine systems Higher power engine systems Longer life engine systems

Ion Propulsion Roles

Main Asteroid Belt

Trojan Asteroids Centaur Minor Planets

Trans-Neptunian Objects Kuiper Belt Objects / Comets

Jupiter and Moons

Saturn and Moons

Uranusand Moons

Neptune Pluto/Charon and Moons

Inner Planets

- Solar Electric Confined to Inner Solar System
 - Also limited reach to large outer planetary bodies with aerocapture (Jupiter, Saturn, Uranus, Neptune only)

•Nuclear Electric for Large Flagship Missions to Outer Planets

- -Large Targets
- -Fastest (100 kW Reactor)
- ->500 kg Payloads
- -Delta IV Launch Vehicles

- •Radioisotope Electric for New Frontiers Class Outer Solar System Missions
 - -Targets with low Mass
 - -Slower (500 W)
 - <50 kg payload
 - -Delta II Launchers

Electrostatic "Ion" Thrusters

GRC Task Objectives

- Demonstrate 2x Xenon throughput improvement in a NSTAR thruster
- Perform analyses and short term tests of wear-out failure modes
- Quantify ion energy distribution in a 40 cm ion thruster discharge cathode
- Demonstrate multi-engine Xenon ion thruster operation
- Demonstrate high efficiency, light weight power processor

GRC Task Resources	FY02	FY03	FY04	
Total Budget	\$1500 K	\$1500 K	\$1500 K	
CS Workforce	15FTE	14FTE	14FTE	
NRA Grants				
 Other Grants 	\$140 K			
 NRA Contracts 		Projected to be similar to FY02		
 Other Competitive Contracts 	\$0K	None starte	d in FY02	
 I-H Task Support Contracts 	\$130K			
CS WF Cost	\$923 K			
Leverage Contributions: External to NASA	\$0 K			
Leverage Contributions: Other NASA Sources	NRAs	NRAs+	NRAs+	
-		Dawn	Dawn	

Electrostatic "Hall" Thrusters

Technology Products

Hall
50kW, ~3000sec (30x SOA)
Understand physical
processes & engineering
constraints
Magnetic field optimization
Operation from dynamic
power sources
Multiple Stage

Benefits

Smaller propulsion system mass fraction More payload / science Smaller launch vehicle

Mission Applications

Earth Science

Station keeping & Orbit maintenance Space Science*

Propulsion for all classes of missions and spacecraft sizes

HEDS*

Propulsion for all classes of missions and spacecraft sizes

* Co-funding

Electrostatic "Hall" Thrusters

GRC Task Objectives

- Perform analyses and short term tests of wear-out failure modes
- Demonstrate high thrust / power concept a 50kW power level
- Understand Hall thruster erosion mechanisms as a function of design and operating conditions
- Demonstrate multi-engine operation
- Demonstrate operation from dynamic power sources

GRC Task Resources	FY02	FY03	FY04	
Total Budget	\$1050 K	\$1050 K	\$1050 K	
CS Workforce	10FTE	12FTE	12FTE	
NRA Grants				
Other Grants	\$245 K		Projected to be similar to FY02	
 NRA Contracts 	ontracts \$0K	Projected to		
Other Competitive Contracts		None started in FY02		
 I-H Task Support Contracts 	\$234K			
CS WF Cost	\$376 K			
Leverage Contributions: External to NASA	\$50 K			
Leverage Contributions: Other NASA Sources	\$430K	\$600K+ NRA	??+NRA	

Pulsed Plasma Thrusters

Technology Products

PPT

2x mass reduction 25x pulse life improvement 2x impulse bit accuracy 0.1x impulse bit

SSE - Large Space
Observatories
ESE - Primary ACS
HEDS - Large Space
Structure Control
100M pulse
10-1000 µN-s I_{bit}
2% I_{bit} uncertainty

Single Axis/
Single Thruster
4M pulse
Teflon
5 kg
10% efficiency
100-800 µN-s I_{bit}
750 - 1400 s I_{cn}

Benefits

Smaller propulsion system mass fraction More payload / science Smaller launch vehicle

Mission Applications

Earth Science

Station keeping & Orbit maintenance Space Science*

Propulsion for all classes of missions and spacecraft sizes

HEDS*

Propulsion for all classes of missions and spacecraft sizes

* Co-funding

Better understanding of EP thruster physics More efficient engine systems Higher power engine systems Longer life engine systems

Pulsed Plasma Thrusters

GRC Task Objectives

- Perform analyses and short term tests of wear-out failure modes
- Demonstrate high efficiency, light weight, low volume PPT and electronics

GRC Task Resources	FY02	FY03	FY04
Total Budget	\$450 K	\$450 K	\$450 K
CS Workforce	4FTE	4FTE	4FTE
NRA Grants			
Other Grants	\$60 K		
NRA Contracts		Projected to be similar to FY02	
 Other Competitive Contracts 	\$21K	None starte	d in FY02
 I-H Task Support Contracts 	\$119K		
CS WF Cost	\$217 K		
Leverage Contributions: External to NASA	\$0 K		-
Leverage Contributions: Other NASA Sources	\$0K	\$0K	\$0K

NRA Contracts	F	Resources	
MIT:	FY02	FY03	FY04
 High Isp Hall Thrusters - first principle modeling of Hall thruster physics and performance 	\$257 K	\$379 K	\$125 K
VAACO Industries:			
 Develop a Xenon feed system using photo-chemically etched construction technology 	\$477 K	\$400 K	\$95 K
JPL/GRC			
 Develop advanced carbon-carbon grids to enable operation of ion thrusters at high power levels and high specific impulses 	\$527 K	\$440 K	\$515 K
<u>GSFC</u>			
 Formulate concepts, perform analysis, develop fabrication techniques, and produce and test hardware to demonstrate critical proof-of-concept functions for MEMS-based catalytic hydrogen peroxide propulsion system 	\$460 K	\$456 K	\$0 K

Very High Power Electric Thrusters

Technology Products

Electrodeless (PIT)
MACH2 numerical simulation
Rebuild thruster
Initiate performance evaluation

MPD MACH2 numerical simulation Quasi-steady state testing 0.1-5.0MW self field 0.1-5.0MW applied field

Benefits

Very short trip times Very large payloads, >10x

Mission Applications

Space Science*

Propulsion for large, fast missions, e.g. interstellar, outer planet HEDS*

Propulsion for fast human planetary missions

* Co-funding

Better understanding of thruster physics Component technologies Longer life engine systems Model validation More efficient engine systems

GRC Task Objectives

- Demonstrate 60% efficient pulsed gaseous MPD thruster, 0.1-1MW, 2000<lsp<7000sec
- Evaluate both self field and applied field MPD geometry
- Evaluate a variety of gaseous propellants
- Transition to steady state operation
- Complete first principle MACH2 simulation of a PIT for "long" times
- Duplicate previous PIT experiments and extend to water as a propellant
- Investigate processes in associated technologies magnetic nozzles, plasma formation, etc.

GRC Task Resources	FY02	FY03	FY04
Total Budget	\$715 K	\$700 K	\$700 K
CS Workforce	6FTE	7FTE	7FTE
NRA Grants			
Other Grants	\$428 K		
NRA Contracts		Projected to	to be similar to FY02
Other Competitive Contracts	\$11K		
I-H Task Support Contracts	\$31K		
CS WF Cost	\$245K		
Leverage Contributions: External to NASA Leverage Contributions: Other NASA Sources	\$100K		

Small Chemical Thrusters

Technology Products

240-300 sec non-toxic monoprop engine system Better understanding of nontoxic monoprop chemistry

Benefits

Greater Isp — enable missions "Green" propellant — safety Micro-propulsion for nano-craft

High energy oxidizer chemistry 380 sec biprop thruster system High performance H/O

Mission Applications

Earth Science*
Station keeping & Orbit maintenance

Micro-rocket technology

Space Science

Solar system sample – return missions Nano-craft propulsion

HEDS*

Attitude control / maneuvering

* Co-funding

Small Chemical Thrusters

GRC Task Objectives

- Demonstrate 380 sec breadboard storable rocket using hydrazine and fluorinated oxidizers with plan for life test
- Demonstrate green monopropellant formulations with a long life catalyst yielding lsp > 250 sec
- Investigate alternate non-catalytic combustion processes for green monopropellant blends
- Demonstrate non-catalytic combustion of HAN monopropellant blend
- Establish cold gas and hot gas performance of micro-nozzles
- Select chemistry for decomposing solid micro-nozzle fuel

GRC Task Resources	FY02	FY03	FY04
Total Budget	**************************************	\$840 K	\$840 K
CS Workforce	7FTE	7FTE	7FTE
NRA Grants			
Other Grants	\$ 50K		
NRA Contracts		Projected to	be similar to FY02
Other Competitive Contracts	\$ 498K		
 I-H Task Support Contracts 			
CS WF Cost	\$ 292K		
Leverage Contributions: External to NASA	\$ 50K		
Leverage Contributions: Other NASA Sources	\$ 300K	\$ 300K	

Recent Accomplishments Examples

- Successfully Completed the DS-1 ion engine mission
- Successfully Demonstrated a 1st Generation PPT on EO-1
- Won a Code S NRA for Development of a ~10kW, 4100s next generation ion engine
- Received Patent for "Design and Manufacturing Processes of Long-life Hollow Cathode Assemblies"
- Successfully Tested Pyrolytic Graphite Grids on an 8cm Ion Engine
- Verified Design of 50cm Grids for a 9000sec, >10kW Engine
- Quantified Hall Thruster Erosion/ Sputtering Mechanisms
- Operated GRC Designed Hall Thruster at 50% Beyond Design Point of 50kw
- Successfully Operated 2nd Generation PPT and Driver Electronics
- Operated MPD Thruster and Verified Modeling Analysis

On-Board Propulsion Community Connections

 Significant regular coordination/ collaboration with organizations external to GRC

Examples:

- Technical exchange / coordination reviews with AFRL/Edwards
 - Ad hoc splinter meeting in specific technical areas
 - Current areas of collaboration include Hall, PPT, & Monoprop
- Integrated High Payoff Rocket Propulsion Technology (IHPRPT)
 - Coordination and regular review of propulsion technology program plans/ status
 - Sponsoring members are DOD, Air Force, Navy, Army, NASA

On-Board Propulsion Community Connections

- Significant participation in annual conferences relevant to propulsion technology development, including:
 - Joint Propulsion Conference 19 papers
 - International Electric Propulsion Conference 38 papers
 - AIAA Aerospace Sciences Conference
 - Space Technology & Applications International Forum (STAIF)

Arizona State University	MACH2 modeling
Colorado State University	Ion optics
Kettering University	CFD modeling
MIT	Hall "PIC" modeling
North Carolina A&T University	C/C grid materials
Ohio Aerospace Institute	High power EP
Ohio State University	Plasma thrusters
Pennsylvania State University	Mono & micro prop
Princeton University	Magnetic processes
Toledo University	Hall fundamentals
Tuskegee University	Ion sputtering
University of Illinois	PPT
University of Michigan	Ion and Hall fundamentals
University of Missouri – Columbia	Low thrust trajectory
Whitworth College	Carbon grid erosion measurements
Worchester Polytechnic Institute	PPT plumes

APL Lockheed

ARC Loral

Boeing Minteq International

Busek Pacific NW National Lab

Ceramic Composites Inc. Pratt Whitney

CU Aerospace SAIC/Maxwell Labs

Fischer Engineering Co. TRW

General Dynamics GE/Unison

Jaycor VAACO

Plus Many Other Suppliers of Goods and Services

Leverage Summary

- Current Space Act Agreements include efforts with:
 - Industry organizations in area of Hall thruster development & testing
 - DARPA in area of water based orbit transfer propulsion
 - APL for EP systems related to solar system exploration
 - MDA for SBIR technical management
- Funding from other NASA sources includes:
 - Direct funding from Code S for EP system development
 - Direct funding from Code M for Hall system development
 - Funding from Code S for Next Generation Ion development
 - NRA win
 - ~10kW, 4100sec, 500kg throughput
 - Indirect funding from NASA:
 - e.g., Graduate Student Research Program (GSRP support to University researchers working at GRC)

Leverage Summary

- Collaboration with AFRL for Hall thruster development
- Collaboration with AFRL for Mono-Propellant development
- Co-manage IHPRPT S/C propulsion materials contracts

Advanced Energy Systems

■ Grants
■ Base NRAs
□ Contracts
■ S&E PBC
■ Materials
■ WorkForce

Grants	871
Base NRAs	1720
Contracts	450
S&E PBCs	629
Materials	800
Work Force	2056

Develop electric propulsion systems using mission and engineering constraints as inputs.

Physical Processes & Engineering Constraints

- Performance
- Magnetic System
- Thermal
- Materials
- Stability

Propulsion System
Single vs. Clusters vs. Nested

Mission Requirements

- •Isp, Thrust, Efficiency
- Throttleability
- •Lifetime
- •EMI
- Mass

Facility Issues

- Thrust Stand
- Pumping Speed
- Chamber Size
- Power & Feed Systems
- Thermal Limitations

